

UNIVERSITY OF TECHNOLOGY IN THE EUROPEAN CAPITAL OF CULTURE CHEMNITZ

Circular dichroism and chirality in hybrid lead halide perovskites

Arina Narudin¹, Aleksandra Ciesielska², Wouter van Gompel², Simon Kahmann¹ ¹TU Chemnitz, Institute of Physics, 09126 Chemnitz, Germany ²University of Hasselt, Hybrid Materials Design, 3590 Diepenbeek, Belgium

1D and 2D Chiral Perovskites

((R)-MBAPbBr₃ ((S)-

Br₃ ((S)-MBAPbBr₃

Inorganic chain interacts with organic amine

cations via electrostatic forces and N-H···Br hydrogen bonding.

Crystal structure of the chiral perovskites: Top-left represent the 1D (R- and S-MBA)PbBr₃, bottom-left show the 2D ((R- and S-FMBA)₂PbBr₄ and bottom-right 1D (Rac)-FMBA₂PbBr₄.

Circular Dichroism of MBA-system

The figures show the UV-visible absorption spectrum, CD spectra, and linear dichroism contribution of ((R)-MBAPbBr₃ and ((S)-MBAPbBr₃ at different spots on the front and back sides of the films.

- The CD spectra from front and back sides of the films do not resemble each other.
- CD signal differs significantly, sign changes.
- Large linear dichroism observed for both ((R)-MBAPbBr₃ and ((S)-MBAPbBr₃ films.

References:

[1] Makhija, Urmila et al. (2024) "Effect of film morphology on circular dichroism of low-dimensional chiral hybrid perovskites." *The Journal of chemical physics*, 160(2), 021102.
[2] Zhao et al. (2023) "Circularly polarized luminescence enlargement from crystals to oriented films of Enantiopure 2d Hybrid perovskites." *Chemical Communications*, 59(45), 6881–6884.

