

High performance OPV and their applicaton in wearable devices

Yongsheng Chen

The Institute of Polymer Chemistry The Center for Nanoscale Science and Technology College of Chemistry, Nankai University, Tianjin, CHINA yschen99@nankai.edu.cn

The 2nd Sino-Germany Workshop on Printable Photovoltaics May 22, 2024 Erlangen, Germany

Outline

The Status and Challenges of OPV

CH series of high performance OPV materials

Wearable OPV devices

The OPV status

PCE: ~ 20%, still significantly behind of that of inorganic ones

Stability issue

Application cases or where/what to use them?

Current issue for OPV

Materials in the active layer!

The issue: large binding energy leads to large Eloss!

□ Most important process/steps happen at the interface!

Why for the large OPV Eloss?

Reason for large Eloss: serve no-radiatve loss

Mulliken–Hush Model

Free Charge

J. Am. Chem. Soc. 1952, *74*, 811. *Electrochim. Acta* 1968, *13*, 1005.

How to reduce: **E**_{loss}

no-radiative loss

GaAs/Si ~ 0.04 eV

OPV > 0.16 eV

Material optimization

for reduced Krn !

All matters:

- ground/excited/CT states
- Intermolecular interaction
- packing, morphology, etc

Some of our earlier works

High performance A-D-A molecules!

defined structures/molecules

Nature Electronics, 2019, 2, 513 Science 2018, 361, 109 Nature. Photon. 2017, 11, 85 Nature Photon., 2015, 9, 35 Acc. Chem. Res., 2013, 46, 2645 Adv. Mater, 2019,1804723 Adv. Mater, 2018, 30, 1707508 J. Am. Chem. Soc, 2015, 137, 3886 J. Am. Chem. Soc, 2014, 136, 15529 J. Am. Chem. Soc., 2013, 135, 8484 J. Am. Chem. Soc., 2013, 135, 5921 J. Am. Chem. Soc., 2012, 134, 16345 J. Am. Chem. Soc., 2013, 135, 5921

A semi-empirical model for OPV

SQ (Shockley-Queisser) PV model, Alan Heeger OPV model

A semi-empirical model for OPV

 $V_{oc} = \frac{1}{q} (E_g - E_{loss}) = \frac{1}{q} (\frac{1240}{\lambda} - E_{loss})$

 $J_{sc} = \int_{300}^{\lambda} \frac{q\lambda}{hc} \cdot E(\lambda) \cdot EQE(\lambda) \cdot d\lambda$

 $PCE(\%) = V_{oc} \cdot J_{sc} \cdot FF/P_{in} = \frac{1}{e} \left[\left(\frac{1240}{\lambda} - E_{loss} \right) \cdot \int_{300}^{\lambda} \frac{q\lambda}{hc} \cdot E(\lambda) \cdot EQE(\lambda) \cdot d\lambda \cdot FF/P_{in} \right]$

Based on

- Balanced Theory
- Shockley-Queisser Limit Theory
- (SQ Limit for photovoltaic device)
- State-of-the-art experimental results

A semi-empirical model, for both material design and optimiza

Science 2018, 361, 109; J. Mater. Chem. A, 2020, 8, 9726

The characteristics of ADA type compounds

Why ADA molecules are better: A-D-A vs D-A-D

What are ADA molecules (vs DAD)? most unique characteristics/特征?

HOMO/LOMO Electron density distribution

$$\Delta \mathbf{Q} = \mathbf{\Psi}_{LUMO}^2 - \mathbf{\Psi}_{HOMO}^2$$

Charge density difference between excited state and ground state

U vs reverse T type frontier electron density distribution

Chem. Soc. Rev. 2020, 49, 2828.

The characteristics of ADA materials

Why A-D-A is better than DAD etc?

Unique and optimal

spatial electron distribution at front (excited) orbitals

- 1) Facilitated exciton dissociation
- 2) Optimized Morphology for charge transportation
- 3) Stable and 2D/3D networked packing
- 4) Smaller Eloss

How we can get better?

Chem. Soc. Rev. 2020, 49, 2828.

Contents

The Status and Challenges of OPV

CH series of high performance OPV materials

Wearable OPV devices

Charactristics of CH Series OPV molecules

2D conjugation extention for smaller reorganization energy and higher FL

Reaction Coordinate *Nat. Energy* 2021, *6*, 799.

Get better molecules:

High flurescence

□ Increase CT state

Reduce the coupling between CT & GS 11

Some examples of CH series materials

1. Central unit conjugation extension

- □ smaller reorganization energy
- □ stronger intermol packing
- \square Optimze packing modes
- □ Better potential for optimization

2. F-subsitituted central unit

Stronger and more packing from the central unit

Angew. Chem. Int. Ed. 2022, 61, e202209580.

F-subsititution leads to better performance

Better morpholohy and higher PCE (18.33% vs 16.49%) Smaller Eloss

Angew. Chem. Int. Ed. 2022, 61, e202209580.

3. More peripheral X subsititation: 18.22% PCE

> *Energy Environ. Sci.* 2022, *15*, 3519 *Angew. Chem. Int. Ed.*, 2023, *61*, e202312630.

Energy Environ. Sci. 2022, 15, 3519.

4. Mutiple conjugation extention

Sci. China Chem. 2022, *65*, 1362.

5. Dielectric consistant turning

larger dielectric constant due to enhance packing & halogen subsitition

Adv. Funct. Mater. 2023, 2301573

Bromided CH material for PCE > 19%

Br atom and related molecules

- **Easier polerization, better**
 - crystalline
- □ Larger steric hindance
- **Optimized approach: introduce**
 - Br at the central unit
 - Stronger and more ordered packing
 - □ Larger E₅ Smaller E of binding
- **D** PCE of 19.06% for binary device
- **500 nm thickness device with**

15.7%PCE

A race of for brmoide materials

Nature Communications | (2023) 14:4707

6. OPV module

- Blade coating for large OPV module (25 cm²)
- PCE of 14.42%, 92% remains after 500 h under MPP

Solar RRL 2023, 7, 2300029

Both stable and high performance OPV

HTL NMA—High reverse OPV with high performance

Life time > 5 years—The best stability with PCE > 18% under MPP conditions

Angew. Chem. Int. Ed., 2022, e202207397

Dimer of CH acceptor materials

7. Dimers of CH series materials

Adv. Energy Mater. 2023, DOI: 10.1002/aenm.202300301.

8. Dimers of CH molecules connected at the central unit

3D acceptors with multiple CH A–D–A units

Monomer to Dimer

- **Novel dimerzation**
- Avoid interfered end packing

Reduced reorganization energy

Energy Environ. Sci. 2023, 16, 1773 Angew. Chem. Int. Ed., 2023, e202307962

planar vs propeller type molecules

CH25

CH26

Active Layers	V _{oc} [V]	J _{SC} [mA cm-2]	Calc. J _{sc^[b] [mA cm⁻²]}	FF [%]	PCE [%]
PM6:CH25	0.840 (0.836±0.010)	4.82 (4.19±0.35)	4.33	55.4 (55.4±0.8)	2.24 (1.91±0.19)
PM6:CH26	0.920 (0.922±0.003)	22.98 (22.60±0.22)	22.49	72.7 (77.3±0.4)	15.41 (15.11±0.17)

Angew. Chem. Int. Ed., 2023, 62, e202311686

Polymerized CH acceptor materials

9. Polymerized CH type molecules

Different linker: double vs triple CC bonds

Adv. Funct. Mater. 2023, 2214248.

Short summary: CH is a great platform for multiple optimization

More diverised and optimization in terms of molecular design! Single molecules, oligomers and polymers

More structure optimization = Better PCE imporvement possibility

Mutiple conjugation extension

PCE ~ 19%

Angew. Chem. Int. Ed., 2023, e202308832

Ontline

The Status and Challenges of OPV

CH series of high performance OPV materials

Wearable OPV devices

Where are OPV for?

轻,薄,柔,透光 Light, thin, flexibe, transparent

Weable OPV and its applications

Solar-powered clothes, for the heat and cold

Flexible OPV-EC thermoregulatory clothing (OETC): cooling in sunlight, warming in dark

Outdoor, space, polar regions

Z. Wang, R. Ma, Y. Liu, Y. Chen, et al, Science, 2023, 328, 1291-1296

Self-sustaining personal all-day thermoregulatory clothing using only sunlight

Self-sustaining personal all-day thermoregulatory clothing using only sunlight

OPV+EC 集成器件

Self-sustaining personal all-day thermoregulatory clothing using only sunlight

Thermoregulation performance of OETC in the outdoor and the prospect for use in space

Summary

CH series of OPV molecules

Flexible and wearable OPV devices

Acc of Mater Res, 2023, 4, 772 Chem Soc Rev, 2020, 49 (9), 2828 Acc Chem Res, 2012, 46, 2645

Cooling in sunlight, warming in dark!

Science, 2023, 328, 1291-1296

Acknowledgements

MoST, NSF, Tianjin City, Nankai Univ and many collablrators mostly, the students!

Comments and Discussion welcomed