

Department of Chemical & Biomolecular Engineering College of Design and Engineering

Unlocking the Efficiency Potential of Perovskite Solar Cells: from Single-junction to Tandem

A/Prof. Yi Hou^{1,2}

¹Department of Chemical and Biomolecular Engineering, National University of Singapore ²Gp Head, Solar Energy Research Institute of Singapore (SERIS)

Email: yi.hou@nus.edu.sg

PV panel cost accounts for a small fraction of system

Single-junction perovskite exceeds the efficiency of silicon?
Where is the limit of perovskite-based MJ?

Department of Chemical &Biomolecular EngineeringCollege of Design and Engineering

https://www.nrel.gov/pv/interactive-cell-efficiency.html

GREEN ET AL.

PV Records (cell area >1 cm²)

Perovskite has outperformed most thinfilm PV technologies

 Reducing the PCE disparity with GaAs (1.4eV) and Si (1.1eV) by optimizing bandgaps

> Thin-film-based PV technologies

2

TABLE 1Confirmed single-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at25°C (IEC 60904-3: 2008 or ASTM G-173-03 global).

Classification	Efficiency (%)	Area (cm²)	V _{oc} (V)	J _{sc} (mA/cm²)	Fill factor (%)	Test centre (date)	Description
Silicon							
Si (crystalline cell)	26.8 ± 0.4 ^a	274.4 (t)	0.7514	41.45 ^b	86.1	ISFH (10/22)	LONGi, n-type HJT ⁴
Si (DS wafer cell)	24.4 ± 0.3^{a}	267.5 (t)	0.7132	41.47 ^c	82.5	ISFH (8/20)	Jinko Solar, n-type
Si (thin transfer submodule)	21.2 ± 0.4	239.7 (ap)	0.687 ^e	38.50 ^{d,e}	80.3	NREL (4/14)	Solexel (35 μ m thick) ⁵
Si (thin-film minimodule)	10.5 ± 0.3	94.0 (ap)	0.492 ^e	29.7 ^{d,f}	72.1	FhG-ISE (8/07)	CSG Solar (<2 μ m on glass) ⁶
III-V cells							
GaAs (thin-film cell)	29.1 ± 0.6	0.998 (ap)	1.1272	29.78 ^g	86.7	FhG-ISE (10/18)	Alta Devices ⁷
GaAs (multicrystalline)	18.4 ± 0.5	4.011 (t)	0.994	23.2	79.7	NREL (11/95)	RTI, Ge substrate ⁸
InP (crystalline cell)	24.2 ± 0.5 ^h	1.008 (ap)	0.939	31.15 ⁱ	82.6	NREL (3/13)	NREL ⁹
Thin-film chalcogenide							
CIGS (cell) (Cd-free)	23.35 ± 0.5	1.043 (da)	0.734	39.58 ^j	80.4	AIST (11/18)	Solar Frontier ¹⁰
CIGSSe (submodule)	20.3 ± 0.4	526.7 (ap)	0.6834	39.55 ^{dk}	75.1	NREL (5/23)	Avancis, 100 cells ¹¹
CdTe (cell)	21.0 ± 0.4	1.0623 (ap)	0.8759	30.25 ^e	79.4	Newport (8/14)	First Solar, on glass ¹²
CZTSSe (cell)	12.1 ± 0.3	1.066 (da)	0.5379	35.29 ^k	63.6	NPVM (4/23)	loP/CAS ¹³
CZTS (cell)	10.0 ± 0.2	1.113 (da)	0.7083	21.77 ⁱ	65.1	NREL (3/17)	UNSW ¹⁴
Amorphous/microcrystalline							
Si (amorphous cell)	$10.2 \pm 0.3^{L,h}$	1.001 (da)	0.896	16.36 ^e	69.8	AIST (7/14)	AIST ¹⁵
Si (microcrystalline cell)	11.9 ± 0.3 ^h	1.044 (da)	0.550	29.72 ⁱ	75.0	AIST (2/17)	AIST ¹⁶
Perovskite							
Perovskite (cell)	24.35 ± 0.5 ^m	1.007 (da)	1.159	25.60 ^k	82.1	NPVM (4/23)	NUS/SERIS ¹⁷
Perovskite (minimodule)	22.4 ± 0.5 ^m	26.02 (da)	1.127 ^d	25.61 ^{d,b}	77.6	NPVM (7/22)	EPFLSion/NCEPU, 8 cells ¹⁸

Solar Cell Efficiency Tables (Version 62), June 2023

Approaching the ideal bandgap of GaAs

□ Approaching the ideal bandgap of GaAs

Composition engineering has reached its inherent limits

Department of Chemical &Biomolecular EngineeringCollege of Design and Engineering

Feng, J.; ... Hou, Y.* Nature Communications, 14, 5392 (2023)

Traditional light management based on ray optics

> 10 um-thick single crystal perovskite has a narrower PV bandgap

n(GaAs): 3.7 *n*(Perovskite): 2.4

Ray optics is not effective in extending perovskite band edge

Narrowing the PV bandgap of FAPbl₃

- without composition engineering and increasing thickness

Ultrathin GaAs solar cells (~200nm)

Wave optics (single cell grating + high *n*)

Nature Energy 4, 761-767 (2019)

Resonant grating for diffraction
Strong light confinement and propagation in waveguides

Narrowing the PV bandgap of FAPbl₃

- without composition engineering and increasing thickness

Resonant solar cells with Brillouin-zone folding

□ Supercell can induce Brillouin-zone folding

□ Brillouin-zone folding provides an approach to increase photonic density of states

□ Resonant solar cells: 18 nm spectral extension, 35 meV band-edge extension, 1.5 mA/cm² J_{sc} improvement

Carrier management: Antimony doped tin oxides (ATOx) HTL

10

□ ATOx is a more stable and transparent HTL in "p-i-n" structured perovskite solar cell.

 \Box ATO_x suppresses non-radiative recombination in perovskites

12

Tandem is one of the most practical solutions to overcome SQ limit

Perovskite – a fantastic wide-bandgap absorber

Low exciton binding energy
Long diffusion length
Strong absorption

Compatibility with vacuum and solution processing

Department of Chemical & A Biomolecular Engineering College of Design and Engineering

Advanced Materials, 2106540 (2022); Nature Reviews Materials 3, 18017 (2018); Nature Reviews Materials 2, 16100 (2017)

Perovskites - efficient wide-bandgap absorbers

□ Ideal tandem bandgaps: 1.0eV/1.6eV e.g., Si requires perovskite Bandgap >1.65 eV

□ Efficient wide-bandgap absorbers

Nature Energy 3, 828 (2018) https://www.lmpv.nl/db/

S Department of Chemical & Fu, F.*; Ballif, C.; Hou, Y.* et al **Advanced Materials**, 2022, 2106540. Biomolecular Engineering College of Design and Engineering Hou, Y.; Aydin, E.; De Wolf, S.; Sargent, E. et al. **Science**, 2020, 367, 1135-1140

The depletion width correlates to the geometry factor

||||

h+

Diffusion dominant region in perovskite

□ Reduce carrier collection paths;

□ Enhanced wetting of perovskite precursor;

Hou, Y.; Aydin, E.; De Wolf, S.; Sargent, E. et al. Science, 2020, 367, 1135-1140

of Singapore

Institute of Singan

Perovskite/Si tandem performances evolution

Hou, Y.; Aydin, E.; De Wolf, S.; Sargent, E. et **Science**, 367, 1135-1140 (**2020**)

PCEs boost from 26% to 33%

1. Saw marks on Si surface

2. Lower absorption at NIR

Department of Chemical &Biomolecular EngineeringCollege of Design and Engineering

Albrecht, S. et al. Solar RRL 5 (7), 2100244

Where is the limit of perovskite/Si?

Department of Chemical &Biomolecular EngineeringCollege of Design and Engineering

Unpublished results

Perovskite/Si (1.7eV/1.1eV)

Perovskite/Perovskite/Si (1.9eV/1.5eV/1.1eV)

Department of Chemical & Biomolecular Engineering College of Design and Engineering

Department of Chemical &Biomolecular EngineeringCollege of Design and Engineering

Department of Chemical & Biomolecular Engineering College of Design and Engineering

Department of Chemical &Biomolecular EngineeringCollege of Design and Engineering

Centralized and decentralized PV

- from PK/Si to PK-based thin-film tandems

□ III–V tandem (PCE = 30%)

□ Organic tandem (PCE =10%)

- □ Lightweight;
- □ Aesthetics;
- □ Efficient (>30%);
- □ Lifetime (~10 years)

Thin-film-based tandem (PCE = 30%)

Advanced Energy Materials, 11, 2002874 (2021); Energy Environ. Sci., 2014,7, 2925-2933

- □ Perovskite block all the high energy photons
- □ Organic materials are relatively stable under near-infrared light

First generation interconnecting layer (ICL)'s issues

Department of Chemical & Biomolecular Engineering College of Design and Engineering

Chen, W...He, Z.;* Djurišić, A.;* Hou, Y.* Nature Energy 7, 229-237 (2022)

Second generation ICL – Ultrathin TCOs

Department of Chemical & Biomolecular Engineering College of Design and Engineering

Vational University

Chen, W.; ... He, Z.;* Djurišić, A.;* Hou, Y.* Nature Energy 7, 229-237 (2022) Aydin, E.; Wolf, S. D. et al. Nature, DOI: 10.1038/s41586-023-06667-4 (2023)

NIR light management by controlling interference spectrum

Department of Chemical &Biomolecular EngineeringCollege of Design and Engineering

Liang, H.; ... Fu, F.; Hou, Y. Joule 2023, 7, 1-14.

Performance of the perovskite/CIS tandem solar cell

Department of Chemical &Biomolecular EngineeringCollege of Design and Engineering

Liang, H.; ... Fu, F.; Hou, Y. Joule 2023, 7, 1-14.

Acknowledgment

Department of Chemical &Biomolecular EngineeringCollege of Design and Engineering

NATIONAL RESEARCH FOUNDATION PRIME MINISTER'S OFFICE SINGAPORE

Group members:

- Dr. Shunchang Liu Dr. Zhenrong Jia
- Dr. Xiuxiu Niu
- Dr. Renjun Guo
- Dr. Donny Lai
- Dr. Wang Tao
- Dr. Nengxu Li

Ezra Alvian (PhD student) Haoming Liang (PhD student) Zhuojie Shi (PhD student) Xiao Guo (PhD student) Xi Wang (PhD student) Jinxi Chen (PhD student) Yan Zhang (PhD student) Ran Luo (PhD student) Yuduan Wang (PhD student) Zijing Dong (PhD student) Qilin Zhou (PhD student) Ling Kai Lee (PhD student) Zhouyin Wei (PhD student) Xin Meng (PhD student) Xinyi Du (PhD student) Xinyu Zhang (PhD student)

