Imperial College London

From UV to Near-Infrared light detection: next generation photodetectors for imaging and biometric applications

Dr Nicola Gasparini

Department of Chemistry Imperial College London Centre of Processable Electronics <u>n.gasparini@imperial.ac.uk</u> X @nicogaspa

Sino-Germany Workshop, Erlangen, May 21st, 2024

The Gasparini group Polina Jacoutot Francesco Furlan Tianyi Zhang Zhuoran Qiao Davide Nodari

Prof. Martin Heeney Dr Julianna Panidi Prof. James Durrant Prof. Martyn McLachlan Dr Artem Bakulin Prof. Ji-Seon Kim

Prof. Christoph Brabec

Prof. Iain McCulloch

Prof. Derya Baran Prof. Thomas Anthopoulos Dr Alberto Scaccabarozzi Prof. Sahika Inal

POLITECNICO MILANO 1863

Prof. Giulio Cerullo Dr Franco Camargo

TUDelft Prof. Achilleas Savva

Imperial College London

Dr Christos Chochos

Dr Armin Ardalan

Engineering and

Physical Sciences Research Council

Dr Oskar Sandberg

Internet of Things

Industrial IoT market size worldwide for 2025 predicted to be \$111 billion!

Imperial College London

Photovoltaics

Photodetectors

Healthcare sensors

State-of-the-art Inorganic PD Technologies

UV: CsI and Cs₂Te broadband photomultiplier tubes (PMTs) \rightarrow bulky and fragile

Vis: c-SI and III-V semiconductors requires optical filtering for narrowband → fabrication complexity, high T processes

NIR: InGaAs broadband, input filtering through bulky diffraction gratings or interferometers \rightarrow £££

Organic photovoltaics vs organic photodetectors

Similarities

- Diode Architecture
- Necessity to extract current generated from light

Key Differences

- For Photovoltaics we maximise power output whereas for Photodetectors we want to simultaneously optimise responsivity, detectivity and speed of response
- Photovoltaics are operated at forward bias whereas photodetectors are operated at reverse bias

Figures of Merits

RESPONSIVITY (EQE)

DARK CURRENT (Jd) •••• e' inject. barrier •••• e⁻ inject. barrier … h⁺ inject. barrier ---- h⁺ inject. barrier (

Imperial College

London

NOISE EQUIVALENT POWER (NEP)

LINEAR DINAMIC RANGE (LDR)

Fang et al. *Nat. Phot.* 2109, **13**, 1.

Pecunia et al. Organic Narrowband Photodetectors, 2020

Specific Detectivity (D*)

Adv. Mat. 2021, 32, 2003818.

Noise current

The noise describes the statistical fluctuations of the current over time i(t) around an average value i_{mean} . The root mean square value of this fluctuation is called noise current i_{noise}

$$i_{noise}(f) = \sqrt{i_{shot}^2 + i_{thermal}^2 + i_{1/f}^2(f)} [A H z^{-1/2}]$$

$$i_{shot} = \sqrt{2qi_{dark}} \quad [A Hz^{-1/2}] \qquad i_{thermal} = \sqrt{4k_B T R_{shunt}^{-1}} \quad [A Hz^{-1/2}] \qquad i_{1/f} \propto \frac{1}{f} \quad [A Hz^{-1/2}]$$

Shot noise \rightarrow represents fluctuations in the charge carrier distribution over time and space

Thermal noise \rightarrow results from thermal excitation of charge carriers frequency-dependent sources, generation and recombination of electronhole pairs.

Noise current

$$i_{noise}(f) = \sqrt{i_{shot}^2 + i_{thermal}^2 + i_{1/f}^2(f)}$$

This is the calculated noise
 The measured noise is always higher because takes into account all the sources of the white noise that are not considered in the model

Current approaches for suppressing dark current

Adv. Optical Mater. 2020, 8, 1901568

Laser and Photonics Reviews. 2014, 8, 924.

Adv. Funct. Mater. 2020, 30, 1904205

Infrared organic photodiodes

Why Infrared Photodetectors?

 Biological windows (NIR-II: 1000 – 1300 nm) and NIR-III: 1550 – 1870 nm), which offer deeper tissue penetration, improved image contrast and reduced photobleaching

K.-H. Jeong, Science, 2006

Jonsson et al. 2015

- Night cameras

Why NIR-OPDs?:

- conformal coverage
- biocompatibility
- cooling requirements
- preferred choice for wearable health monitors

Charge carrier mobility and lifetime

Thickness dependent JVs

Imperial College London

JVs and PD parameters

Organic Photodetectors

15 Imperial College London

Green LED - 532 nm NIR LED - 850 nm

Gasparini et al. Adv. Materials Techn., 2018, 1800104

Selenium-Substituted NFA-IDSe

Lower aromatic stabilisation Higher electron affinity Increased polarisation

Reduced bandgap \rightarrow red-shift absorption Improved intermolecular interaction

20 Imperial College London

And the Heeney group

Selenium-Substituted NFA-IDSe

 $q_r (nm^{-1})$

 $q_z (nm^{-1})$

 $q_z (nm^{-1})$

Charge carrier mobility

22 Imperial College London

IDIC

 $\begin{aligned} \mu_{electrons} &= 0.002 \ cm^2 \, V^{\text{-1}} \, s^{\text{-1}} \\ \mu_{holes} &= 0.009 \ cm^2 \, V^{\text{-1}} \, s^{\text{-1}} \end{aligned}$

IDSe

 $\begin{aligned} \mu_{electrons} &= 0.16 \text{ cm}^2 \text{ V}^{\text{-1}} \text{ s}^{\text{-1}} \\ \mu_{holes} &= 0.22 \text{ cm}^2 \text{ V}^{\text{-1}} \text{ s}^{\text{-1}} \end{aligned}$

All figures of merit are higher in IDSe OPD

Blade coating- large-area device

	Dark current at -2V bias (A cm ⁻²)
Large-area device	1.2×10^{-7}
Spin-coated device	1.7×10^{-9}

Qiao, ... Gasparini. Journal of Materials Chemistry C, 2024

Ultra-low bandgap polymer for organic photodetector with high infrared detectivity

Jacoutot, ..., Gasparini. Small 2022, 2200580

Ultra-low bandgap polymer for organic photodetector with high infrared detectivity

C₄H́₃

IEICO-4F

Y6

TQ-T

2000

2500

IEICO4F

Imperial College London

Y6

Figure of Merits

27

Specific Detectivity

TQ-T:IEICO-4F OPD D* of 10⁹–10¹⁰ Jones in the UV-Vis-NIR range

D* calculated from NEP and not Jd!

LDR

29 Imperial College London

TQ-T:Y6 35.7 dB

Charge dynamics

30 Imperial College London

TQ-T:Y6 rise/fall time $7.3/8.3 \ \mu s$

Homemade Photoplethysmography setup

- Photoplethysmography: no-contact optical technique to detect volumetric changes in blood.
- Changes in absorbance → **direct current readout** from photodetector.

i

HB monitoring - comparison

34 Imperial College London

Jacoutot, ..., Gasparini. Small 2022, 2200580

Tuning the polymer energetics

Tuning the polymer energetics and morphology

Improved microstructure in TQ-3T:IEICO-4F

Device performances

Jd reduced by 1 order of magnitude

Jacoutot, ..., Gasparini. 2023, Science Advances 9 (23), eadh2694

Device performances

38 Imperial College London

Jacoutot, ..., Gasparini. 2023, Science Advances 9 (23), eadh2694

Real-world application

39 Imperial College London

Jacoutot, ..., Gasparini. 2023, Science Advances 9 (23), eadh2694

Perovskite Photodetectors

x = 0.125

0.8

1.0

1.2

Perovskite Photodetectors

Gao, Peng, et al. Energy & Environmental Science (2014) Daboczi, Matyas, et al. ACS Energy Letters (2021) Tunable through engineering

bandgap halide

Reducing thermal charge generation: halide doping

Nodari, Davide, et al. Advanced Optical Materials (2022): 2201816.

Dark current

 $\begin{array}{c} 46\\ \text{Imperial College}\end{array}$

	$J_d~(A~{ m cm}^{-2})$ at -0.5V
0%Br	2.6x10 ⁻⁸
15%Br	1.3x10 ⁻⁹
25%Br	3.0x10 ⁻⁷

Exponential relationship between J_{d} and V_{oc} over the 0-15% Br range

Similar behaviour as previously reported for organic PDs

Responsivity and Detectivity

$$SR(\lambda) = \frac{J_{ph}}{P_{in}} = EQE \cdot \frac{q\lambda}{hc} \quad [A W^{-1}]$$

$$D^*(f,\lambda) = \frac{SR(\lambda)\sqrt{A\Delta f}}{i_{noise}(f)} \quad [Jones]$$

Wavelength (nm)

Recombination investigation

Long τ_{ave} represents suppressed non-radiative recombination pathways

Morphological analysis

0% Br

15% Br

25% Br

Nodari, ..., Gasparini Advanced Optical Materials (2022): 2201816.

Reducing Jd: Strain-induced α -phase stabilisation in FAPI-based Photodetectors

50 Imperial College London

Cs5 \rightarrow reduction in lattice strain

Hong, Nodari ..., Gasparini Advanced Optical Materials, 2024

α -phase stabilisation

Long-term stability of Cs5-based PD

Thank you for your attention

n.gasparini@imperial.ac.uk