

Solution-Printed Perovskite Tandem Solar Cells

Fei Guo Jinan University 21.05.2024

Jinan University

OUTLINE

□ Introduction to scalable crystallization of perovskite films

Our old / recent results

Vacuum quenching / Perovskite-based tandems

□ Acknowledgement

Efficiency Evolution of Photovoltaics

19.2%

OPV

Efficiency Losses During Upscaling

Large efficiency gap between small-size devices and large-area modules

Efficiency Losses During Upscaling

Scalable coating

Crystallization protocols are difficult to be transferred to scalable coating lines

Challenges:

- Film homogeneity (macro) Solvent evaporation and solute migration/aggregation take place simultaneously
- Crystal morphology (micro) Control crystallization dynamics
- Crystal structure
 Phase purity, crystal orientation, phase segregation, defects ...

- Easy to handle in lab
 Small amount of solution
- Good at producing uniform film
- Good at producing uniform film
- X High material waste (> 90%)
- X Non scalable (< 5×5 cm²)
- X Unable to translate to scalable lines

It is of essential importance to **control crystallization dynamics** to achieve large scale fabrication of perovskite thin-films

Nature Reviews Materials, 2018, 3, 1-20.

Established Crystallization Protocols

Institute of New Energy Technology

Our Printed Perovskites

Since 2017 Jinan Uni

Scalable crystallization technique

Institute of New Energy Technology

□ Introduction to scalable crystallization of perovskite films

Our old / recent results

Vacuum quenching / Perovskite-based tandems

Our Method - Vacuum Quenching

Crystallization dynamics

Additive MACI: Modulate crystal morphology and stabilize phases

Institute of New Energy Technology

Guo F., Qiu S., et al. Advanced Science 2019, 6, 1901067.

MAPbI3 cystal quality

Institute *of* New Energy Technology

Guo F., Qiu S., et al. *Advanced Science* **2019**, 6, 1901067.

□ Introduction to scalable crystallization of perovskite films

Our old / recent results

Vacuum quenching / Perovskite-based tandems

Different Sn-Pb ratios

Printing Low-bandgap perovskites

Passivation with PEABr (Two-step)

Coated with PEABr

Printing Wide-bandgap Perovskites

Intro | Narrow | Wide

E _{PbI2}	E _{DMF}	E _{DMSO}	E _{NMP}	E _{Total}	ΔΕ
-7.735	-68.034	-	-	-76.65	-0.881
-7.735	-	-50.421	-	-59.094	-0.938
-7.735	-	-	-93.98	-102.798	<mark>-1.083</mark>

The strongest binding strength between NMP and Pbl₂, enables to form an intermediate adduct more stable than DMSO and DMF, finally giving rise to controllable crystallization kinetics.

Charge RC

Wide-bandgap Perovskite	V _{oc} [V]	J _{SC} [mA cm ⁻²]	J _{SC, EQE} [mA cm ⁻²]	FF [%]	PCE [%]
Ref	1.18	19.53	18.34	71.15	16.40
MASCN	1.23	20.24	18.92	76.04	18.99
MASCN&PEAI	1.27	20.32	19.09	81.22	20.84

Perovskite - Perovskite

Voltage (V)

Wide-bandgap Perovskite	V _{OC} [V]	J _{SC} [mA cm⁻²]	FF [%]	PCE [%]
Wide-bandgap	1.27	20.32	81.22	20.84
Narrow-bandgap	0.80	29.47	75	17.57
All-perovskite tandem	2.05	14.66	78.7	23.65

Printed Perovskite Tandems

Intro | Narrow | Wide | Charge RC

Perovskite - CIGS

	PCE	V _{oc} (V)	l _{sc} (mA/cm²)	FF
CIGS	19.61	0.702	37.52	74.38
Semi-transparent PVK cell	17.50	1.255	18.44	0.756
Bottom CIGS under PVK cell	9.35	0.678	18.58	74.24
4T tandem solar cell	26.85	-	-	-

Introduction to scalable crystallization of perovskite films
 Our old / recent results

Vacuum quenching / Perovskite-based tandems

Summary

- Developed a generic VACUUM-QUENCHING crystallization method, which enables to scalable deposit high-quality large-area perovskite thin films of different bandgaps for versatile applications.
- Identified that NMP is an ideal solvent in controlling crystallization kinetics of scalable process wide-bandgap perovskite thin films.
- All-perovskite and perovskite-organic tandem devices are fabricated based impermeable
 ALD-deposited SnO2 charge recombination layers.
- Novel Cr-based charge recombination layers without ALD procedure are developed to build perovskite-perovskite and perovskite-organic tandem devices.

Dean of iNET: Prof. Yaohua Mai

Chief Contributors:

Thank you for your

Hongbing Li, Chaoran Chen, Ting Huang, Hongwei Lai, Xinming Zhou, Hongwei Lai, Shudi Qiu, Chaohui Li

Collaborator:

FAU: Dr. Karen Forberich, Prof. Christoph J. Brabec

EPFL: Prof. Mohammad K. Nazeeruddin

Zhengzhou Uni: Prof. Xianhu Liu

Henan Uni: Prof. Shi Chen

Wuhan Uni: Prof. Jianmin Li

stoph J. Brabec ddin

Institute of New Energy Technology

Jinan University 25