

King Abdullah University of Science and Technology

Organic Semiconductor Devices: from energetics

to green processing

Derya Baran

Associate Professor of Materials Science and Engineering Program, KAUST Sino-German Workshop ERLANGEN 2024

KAUST/ OMEGALAB

DERYA BARAN YBRID MATERIALS FOR ENERGY **APPLICATIONS(www.omegalabresearch.com)**

Solution processed PV Stability and reliability of PV

yita airyita airyita siryita siryita ris Divris Divris Divris Divris vica airyica airyica airyica airyica ris Divris Divris Divris Divris sivis Rivis Rivis Rivis is Raivies Divris Raivies Raivies ivris is s raivris raivris raivris vica ziryica ziryica ziryica

Thermoelectrics Charge transport in n-type Stretchable healable TE

Printing, 3D printing, Micro printing Conductive composites Electronic Skin

Energy level determination of organic semiconductors for solar cells

Anirudh Sharma

Jules Bertrandie

Adv. Mater. 2022, 34, 2202575.

Vol. 34 • No. 35 • September 1 • 2022

www.advmat.de

4DVANCED

▲ \

TERIAI

Why energetics matter?

Why energetics matter?

KAUST SOLAR CENTER

Blend 6

∆HOMO: 0.21 eV

-3.87

HC-PCIC

-5.54

-3.53

PBDB-T

-5.33

Offset or no offset?

Classen, et al., Nature Energy, 2020, 10.1038/s41560-020-00684-7

Offset or no offset?

Acceptor

Y6

IT-4F

KAUST SOLAR CENTER

PC₇₁BM

PC71BM

nature materials

() Check for updates

Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells

Safakath Karuthedath^{1,5}, Julien Gorenflot^{1,5}, Yuliar Firdaus¹, Neha Chaturvedi¹, Catherine S. P. De Castro 15, George T. Harrison¹, Jafar I. Khan¹, Anastasia Markina², Ahmed H. Balawi¹, Top Archie Dela Peña ¹, Wenlan Liu², Ru-Ze Liang¹, Anirudh Sharma ¹, Sri H. K. Paleti¹, Weimin Zhang¹, Yuanbao Lin¹, Erkki Alarousu¹, Dalaver H. Anjum³, Pierre M. Beaujuge¹, Stefaan De Wolf¹, Iain McCulloch¹,¹, Thomas D. Anthopoulos¹, Derya Baran¹, Denis Andrienko² and Frédéric Laquai¹

In bulk heterojunction (BHJ) organic solar cells (OSCs) both the electron affinity (EA) and ionization energy (IE) offsets at the donor-acceptor interface should equally control exciton dissociation. Here, we demonstrate that in low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant. Moreover, sizeable bulk IE offsets of about 0.5 eV are needed for efficient charge transfer and high internal quantum efficiencies, since energy level bending at the donor-NFA interface caused by the acceptors' quadrupole moments prevents efficient exciton-to-charge-transfer state conversion at low IE offsets. The same bending, however, is the origin of the barrier-less charge transfer state to free charge conversion. Our results provide a comprehensive picture of the photophysics of NFA-based blends, and show that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low-bandgap NFAs.

S. Karuthedath, Nat. Mater. 20, 378-384 (2021)

Donor

 Δ_{IE}

Motivation

Define a criteria for determining the energetics of OSCs

Correlation between material energetics – Voc

Establish material-property relationship for design rules

SOLAR CENTER

Method of measurements

Yoshida, Jurnal of Physical Chemistry C, 2014, 118, 42 Yoshida, Chemical Physics Letters, 2012, 539, 180

KAUST SOLAR CENTER

Library of Energetics

Correlating Redox Potentials with IE/EA

Donor Polymers

Correlating Redox Potentials with IE/EA

Non-fullerene Acceptors

Correlating with IE/EA and Voc

KAUST SOLAR CENTER

Role of IE-offset in Charge Generation

للعلوم و Uullah University of and Technology

Role of IE-offset in Charge Generation

Wavelength (nr

Terpene Based Green Solvents for Stable Organic Photovoltaics

Daniel Corzo Nature Energy, 2023, 8, 62–73

Diego Rosas Villalva

Opportunities for printed OPV

Adv. Energy Mater. 2020, 10, 2001864

Strategies for green solvent transition

Current Opinion in Green and Sustainable Chemistry 2017, 49-54. Mater. Today 2016, 553-543

TMB

LD50 (Main Solvent) (g/Kg) Lethal Dose: is one way to measure the short-term poisoning potential (acute toxicity) of a material.

Ecoinvent LCA Database Energy Environ. Sci., 2018, 11, 2225-2234

Hansen solubility parameters

Relative Energy Distance = (R_a / R₀) RED < 1 - Soluble RED = 1 - P. Soluble RED > 1 - N. Soluble

Η

Н

Ρ

Ρ

 R_a

SU.

Finding Alternative Solvents

Formulation Guideline

Terpenes as renewable solvents for OPV

Nature Reviews Materials 7, 117-137, (2022)

Chem. Commun., 2014,50, 15288-15296

Ink formulation with terpenes

Terpene utilization in NFAs

Blend	J _{sc} (mAcm ⁻ ²)	V _{oc} (V)	FF (%)	PCE _{ave} (%)	PCE _{max} (%)	cm ⁻²)
P3HT:O-IDTBR (1:1)	11.5	0.72	60	5.1%	5.3%	_ M
PTB7-Th:IEICO-4F (1:1.5)	24.7	0.69	59	9.8%	10.6%	P.,t (
PM6:IT-4F (1:1.2)	15.2	0.81	55	6.8%	7.3%	
PM6:PY-IT (1:1.2)	23.8	0.92	72	15.7%	15.9%	
PM6:(PY-IT:BTP-eC9) (1:0.9:0.1)	25.5	0.89	71	16.1%	16.3%	

Stability of Y-NFAs

Optimized using No solvent additives

Han Xu, Derya Baran et al., Joule, 2023, 7, 9, 2135-2151

Structure-stability relationship of Y-NFAs

Han Xu, Derya Baran et al., Joule, 2023, 7, 9, 2135-2151

THANK YOU FOR YOUR ATTENTION!

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

KAUST SOLAR CENTER