

Optimized Interconnecting Layers for Monolithic Perovskite/Organic Tandem Solar Cells

Chao Liu

The 2nd Sino- Germany Workshop on Printable Photovoltaics May 21st - 23rd, Erlangen, Germany

in cooperation with

Optimized interconnecting layers for n-i-p P-O TSCs

Optimized interconnecting layers for p-i-n P-O TSCs

Background

NBG organic semiconductors:

- NIR absorption
- Nontoxicity
- Good orthogonal solution processibility
- □ Stable components

□ Where is the limitation from?

(1) Joule, 7(3), 484-502;
(2) Chem. Rev. 2022, 122, 18, 14180–14274
(3) Nature, 2022, 604. 280-286.

Losses in ICLs

Metal thin layers reduce energetic and electrical loss.

Chemical protection ability

Sufficient recombination sites

Low contact resistance

(1) Joule, 7(3), 484-502

Parasitic Absorption Vs Metal Shape

□ A broad plasmon absorption band is located in the absorption of OPV sub-cell.

Localized Surface Plasmon Resonance (LSPR) is related to the shape of metal morphology.¹

Surface Energies of MoOx Vs PEDOT:F

Water contact angles

JingJing Tian

□ The surface energies of PEDOT:F and MoOx are different.

PEDOT: F was provided by Prof. Yinhua Zhou's group.

Surface energy Vs shapes of Au NPs

Au NPs on the surface of PEDOT:F:

- □ form more regular and round shapes
- Lower coverage

Optical properties

- The plasmon absorption is shifted outside the absorption window of rear organic absorber in the near-infrared (NIR) region.
- □ The similar optical transmission behavior is observed in the half-stacked tandems.

Performance of n-i-p P-O TSCs

-14

-16 ∟ 0.0

0.5

1.0

Voltage (V)

1.5

2.0

2.5

□ A high PCE of 25.34% is achieved when combining with PM6:BTP-eC9:L8BO.

ICLs for p-i-n structure

Optimized ALD SnO₂ film for p-i-n ICLs

M-ALD SnO₂ show similar a optical property to that of H₂O-ALD SnO₂.
 The electrical property of M-ALD SnO₂ is improved significantly: reducing the electrical loss.

Performance of p-i-n P-O TSCs

Kaicheng Zhang

□ With M-ALD SnO₂-based ICL, the current of PO-TSCs is improved.

P-O TSCs with a quaternary organic absorber

□ With a small amount of [70]PCBM, the *J*sc and FF are further improved, delivering a PCE of 25.22%.

ERN

Erlangen-Nürnberg

Device Stability

A long-term stability is achieved, maintaining the initial PCE of 92% under continuous MHL light w/o UV filter.

- □ No fatigue behaviour is observed, indicating the effective suppression of ion diffusion.
- □ The organic sub-cell is well protected by the PVK layer.

EDXA Mapping of SPVK (cross-section HRTEM)

Supported by Dr. Minjian Wu and Dr. Xin Zhou

 \Box I and Br ions accumulated at SnO₂ layer.

Samples were aged 1000 hrs under a continuous aging condition.

Visible Ion Diffusion Chanels in C₆₀

"Flocculent-like" features observed in the C₆₀ layer for aged SPVK.
 The trace of I, Br, Pb, and Ag in the "flocculent-like" area.

EDXA Mapping of P-O TSCs

□ Organic layers including PEDOT:PSS and polymer active layer block the ion diffusion

□ Br ions and I ions are slightly redistributed in the bulk.

Summary

For n-i-p P-O TSCs:

- the Au-related parasitic absorption is shifted outside the absorption window of rear organic absorber in the nearinfrared (NIR) region by controling the shape of Au NPs.
- □ A high PCE of 25.36% has been achieved.
- For p-i-n P-O TSCs:
- A simply metal (oxides)-free ICL is designed by optimizing the ALD process.
- □ P-O TSCs with high-performance (25.22%) and stability have been realized.