



## Modification of Metastable Phase in Organic Solar Cells (Degree of Polymerization)

## Jie Min

#### The Institute For Advanced Studies, Wuhan University



Email: min.jie@whu.edu.cn

22/05/2024, Nürnberg, Germany

## **Research status**

#### **Dramatic advances in PCEs achieved in these five years**

New Morphology New Donors 20 Acceptors It's time to focus on organic solar cell stability Quinn Burlingame, Melissa Ball & Yueh-Lin Loo PCE nature energy Nature Energy 5, 947–949 (2020) Cite this article Photostability **Stability** Cost 4 10 12 - OPVs 16 Golden triangle of solar cells PCE (%) Ω 2000 2005 2010 2020 2015 Year

A big lifetime issue: Current active layer systems can not meet the requirements for long-term operation

## **Key scientific issues**

# Key point: How to precisely regulate the metastable phase and suppress the phase evolution?



#### **Metastable phase evolution mechanisms**



**Research idea:** Understanding the destabilizing behaviors of ALs; Guiding molecular design and morphology control

#### **Research content**



## Morphological instability of mixed phase domain

#### Intrinsic factors: molecular structure and intermolecular interactions

#### Morphology evolution under operating conditions



Bi-continue interpenetrating network structure



Over-purified
phase domain
Large phase
separation size



$$\boldsymbol{D}(\mathbf{T}) \propto \frac{1}{T_{g}} \begin{array}{c} D(\mathbf{T}): \text{ Molecular diffusion} \\ \text{ coefficient} \\ T_{g}: \begin{array}{c} Phase \text{ transition} \\ \text{ temperature} \end{array} \end{array} \qquad \left( \begin{array}{c} \text{Relative miscibility (D/A)} \\ \frac{\chi_{1,2}}{\chi_{Spinodal}} = \frac{2}{RT} \frac{(\delta_{T1} - \delta_{T2})^{2}}{\left(\frac{\rho_{1}}{M_{1}\phi_{1}} + \frac{\rho_{2}}{M_{2}(1 - \phi_{1})}\right)} \end{array} \right)$$

### **Destabilization mechanism of PD:SMA**



J. Min\* et. al. Adv. Mater., 2023, 35, 2302592.

### **Explore the evolution mechanisms of blend phase**

8

#### The analysis focused on the $T_{g}$ of various acceptor materials





#### **Design and synthesis of PSMAs**



First group to introduce Y-series acceptor into polymer acceptors



High  $M_w \rightarrow$  Viscoelastic effect enhancing  $T_g$  values, mechanical and operational stability

J. Min\* et. al. Joule 2020, 4, 1086; Sci. China Chem., 2020, 63, 1449.

## Multiple strategies: increasing the T<sub>g</sub> of A materials optimizing the metastable morphology



# PCE (11.7% $\rightarrow$ 19.0%) and operational stability ( $T_{80}$ =35,000 hours)

J. Min\* et. al. Chem 2023, 9, 1702; Joule 2021, 5, 1548; EES 2024, Under Review.

### Degree of polymerization $\rightarrow$ Intermolecular interactions

# DP control: modify D/D and D/A interactions control active layer morphology



J. Min\* et. al. Adv. Energy Mater., 2020, 10, 2002709.

#### **DPs of PYT**

*M*<sub>w</sub>: modify D/A miscibility, **determine device efficiency and stability** 



J. Min\* et. al. Joule, 2020, 4, 1070; J. Mater. Chem. C., 2022, 10, 1850.

#### **Precision synthesis (Fronting phase regulation)**



J. Min\* et. al. Joule 2020, 4, 1086; Sci. China Chem., 2020, 63, 1449.

#### Development of a real-time polymerization detection system

#### **Methods:** Combined *in-situ* FTIR and PL spectroscopy (**process control**)





## **Development of a real-time polymerization detection system**

#### **Methods:** Combined *in-situ* FTIR and PL spectroscopy (**process control**)





## **Development of a real-time polymerization detection system**

Method: Automatic polymerization monitoring technology



spectral parameters and *M*<sub>w</sub>

#### **Technical verification: PYT precision synthesis**



J. Min\* et. al. Nat. Commun., 2024, 15, 1248

#### **Technical verification: oligomer precision synthesis**

#### 18

#### Universality testing based on different $P_A$ materials



J. Min\* et. al. Nat. Commun., 2024, 15, 1248

## Conclusions

# Multi-type strategies to achieve highly stable active layer system



Shed light on the destabilization mechanisms in relation to molecular diffusion coefficients and  $T_g$  values

Developed the PSMA strategy and fabricated efficient and stable all-polymer systems with enhanced phase change temperature

#### Materials

**Precision synthesis of low and medium**  $M_W$  polymers to eliminate batch-to-batch variations and keep device performance

## **Acknowledgements**

#### Collaborators

Professor Christoph Brabec (FAU) Professor Yongfang Li (ICCAS) Professor Hongzheng Chen (ZJU) Professor Fei Huang (SCUT) Professor He Yan (HKUST) Research fellow Zhixiang Wei (NCNST) Professor Chuluo Yang (SZU) Professor Zhen Li (WHU) Research fellow Xiaozhang Zhu (ICCAS) Research fellow Erjun Zhou (NCNST) Professor Tao Wang (WUT) Professor Weihua Tang (NJUST) Professor Zhiguo Zhang (BUCT) Professor Xiaotao Hao (SDU) Professor Haiming Zhu (ZJU) Professor Yang Yang (ZJU)



These work mainly completed by Dr. Rui Sun, Dr. Qiang Wu, Dr. Tao Wang, Dr. Jing Guo, Dr. Wei Wang et al. and Doctoral student Yiming Shao, Xinrong Yang, Lin-yong Xu, Yuan Gao, Ji Wan *et al.* 



# Thank you for your attention!

Jie Min Wuhan University 2024/05/21 學大漢義立員